What's in a name? In this case, major differences in chemistry and form.
Log in to view the full article
What's in a name? In this case, major differences in chemistry and form.
A great deal of interest has recently been expressed over the chemistry and terminology used in the preparation of silicones, especially as replacements for D4 and D5 are sought. As such, this column aims to provide an understanding of the relationships between these raw materials and the silicones found in personal care.
Silicon Dioxide
Silicon dioxide is SiO2, also is known as silica, silicic acid or silicic acid anhydride. Its name is derived from the Latin Silex. The CAS number for silicon dioxide is 7631-86-9, and the most common form of silicon dioxide is quartz. Quartz makes up more than 10% of the Earth’s crust; it is also a major component of sand. It is estimated that 95% of commercial silicon dioxide is used in the construction industry to make portland cement, though another use is for making glass—hydrated silica is even used in toothpaste to remove plaque.
Silicon dioxide is also the starting point for making silicone polymers, although the process for making them is equipment-intensive and produces a number of different materials. As such, finding commercial uses for each intermediate in the process is necessary in order to run the plant in a cost-effective manner. The few plants that actually start with the silicon element, described next, and process it all the way through to silicone polymers are called crushers; there are only a handful of companies in this group.
Silicon
Silicon is element 14 on the periodic chart (see Figure 1). While it is an abundant material, it rarely is found in its elemental form.
The term silicone, also called polysiloxane, describes a group of polymers that have repeating groups, as depicted in Figure 6.